对联 ·故事 ·史海钩沉 ·人物档案 ·地方风俗 ·谚语大全 ·讽刺与幽默 · 赚钱 · 法律 · 在线教研 · 会员中心 · 心理测试 · 魔鬼词典 · 顺口溜
 
主页特效 网页特效 百家姓
娱乐 歇后语 绕口令 脑筋急转弯
 
谚语 谜语 名言 邮政编码
便民 酒方 验方 偏方 站长工具  
 
算命 风俗 手相 爱情
女孩 音乐 面相 星座 血型
 
饮食 穴道 偏方 医药
生活 软件 硬件 解梦 高考



   JS特效



实用工具
便民服务 加密解密
 
魅力高密 民间故事 Flash教程 PS教程 最新国内新闻
新华字典 黄道吉日 英语园地  万年历 Html2anycode
  首页 | 美图 | 短信 | 安全 | 校园 | 网站 | 游戏 | UFO | 文秘 | 生活 | 信息技术 | 论文 | 人生 | 情感 | 日记
返回首页
当前位置: 主页 > 论文大全 > 理工类 >

机器人柔性臂动力学建模的D-Holzer法

时间:2010-07-27 23:49来源:盼盼的家园 作者:panpan 点击:
摘要从改进柔性臂的模化原则出发,提出了多连杆复杂的柔性臂系统动力学建模的更为一般化的简单有效的D-Holzer法。用该法推导了两连杆柔性臂系统的动力学模型,并进行了动力学仿
  

摘要从改进柔性臂的模化原则出发,提出了多连杆复杂的柔性臂系统动力学建模的更为一般化的简单有效的D-Holzer法。用该法推导了两连杆柔性臂系统的动力学模型,并进行了动力学仿真。
叙词:柔性臂动力学建模非线性仿真
中图分类号:TP242

A NEW DYNAMIC MODELING
METHOD OF D-HOLZER OF THE
FLEXIBLE MANIPULATOR

Ding XilunZhang Qixian

(Beijing University of Aeronautics

and Astronautics)


AbstractBased on the Holzer method, a new efficiency dynamic modeling method of D-Holzer for multilink flexible manipulators is proposed by improving the assumed principle of modeling. The dynamic model of a two flexible link manipulator system is obtained with this method, and then the dynamic simulation is done with the nonlinear model
Key words:Flexible manipulatorDynamic modelingNonlinearSimulation

0前言

机器人柔性臂是一个非常复杂的动力学系统,存在着严重的非线性。进行机器人柔性臂动力学问题的研究,其模型的建立是极其重要的。在柔性臂的建模上,其关键一点是对分布柔性的有限维近似。这些近似方法中,有当作分布参数系统[1,3]来处理的Rayleigh法、Ritz方法、Galerkin方法、假定模态法,还有当作集中参数系统[2,4]来处理的Holzer法、Myklestad法、有限元素法等,其在建模的方法上各具特点。集中参数系统把弹性体分为几个元素,求各个元素的振动方程式,然后用矩阵集合起来,构成整体的振动方程。其对密度和质量不均匀的物体来说,是很有效的。而分布参数系统是把相对密度、质量比较均匀的系统作为研究对象来处理。如何对系统进行合理假设与近似处理使建模简单有效是目前机器人柔性臂动力学建模所需要解决的主要问题。
针对柔性臂建模研究的现状,对柔性臂建模的Holzer法进行了完善,提出了改进的D-Holzer法。

1系统的模化

由于影响柔性臂动力学系统的因素较多,充分考虑各种影响,建立能够准确反映系统实际情况的精确的动力学模型一般是不可能的,同时,在许多情况下,由于所建立的模型比较复杂,不便于进行动力学分析与控制的研究,所以在建模时要做许多的假设与合理的近似处理。正因为这些假设与近似处理手段的不同,才产生了各种独具特点的建模方法。
1.1方法描述
本文中,把集中弹性质量模型应用于柔性臂的建模。柔性臂是由驱动器驱动的关节和与此相结合的连杆构成的,在此,各个关节均为旋转关节,各个连杆的长度近似不变。原Holzer法[2]的处理方法是,首先,把臂杆分割成适当的区间,把分割后的各区间的质量二等分,做为各区间两头的集中质量来对待,即在臂的切断点存在集中质量,并考虑集中质量间是无质量的弹性体。在Holzer法中,把这个集中质量称作站点(Station),无质量的弹性部分称为弹性域(Field)。柔性机械臂是按照把散布的各个关节和集中质量与无质量的弹性体相结合的构造体而模型化的。连杆分割成几部分是根据所研究的机械臂的特点、控制的方法以及所需的模型的精确程度等问题参考来决定的。例如,在具有很强的柔性的大连杆柔性臂的情况下,为得到高精度的近似模型,就有必要取足够的分割数;反之,在柔性臂的关节部分,末端具有较大的质量,而连杆的质量相对很小的情况下,即使考虑一个连杆对应一个弹性域的话,也可以得到十分近似的模型。
1.2D-Holzer法
根据具体情况,对臂杆均匀细长,末端具有较大的集中质量的柔性臂,我们考虑一个臂杆对应一个弹性域,而且将Holzer法中,对弹性域端部的站点的质量分配的质量均分原则变为按照绕驱动其转动的关节惯量相当的原则。对臂杆不均匀的柔性臂,我们将其适当地分成有限个区间,每个区间作为一个弹性域,对其两端的站点的质量分配也是按照绕驱动其转动的关节惯量相当的原则进行处理。通过下面的简单比较,可以看出,经过这样处理以后,不仅使柔性臂建模过程简单,而且可以得到十分近似的模型,使建模方法更为方便有效。本文将改进后的建模方法,称为D-Holzer法。
1.3方法比较
下面我们就通过图1和表,对动力学建模的Holzer法和改进以后的D-Holzer法做一下比较,这样两种方法的原理和各自的优缺点就一目了然。

                
                图1(省)Holzer法与D-Holzer法的系统简化的描述

表2种方法的比较

实际情况 Holzer法 D-Holzer法 划分原则 ○ 质量均分 惯量等效 考虑角度 ○ 物理性质 力学特性 转动惯量Iai screen.width-400)this.style.width=screen.width-400;"> screen.width-400)this.style.width=screen.width-400;"> screen.width-400)this.style.width=screen.width-400;"> 惯性力矩Mai screen.width-400)this.style.width=screen.width-400;"> screen.width-400)this.style.width=screen.width-400;"> screen.width-400)this.style.width=screen.width-400;">

2系统动力学建模

见图2所示的一末端具有集中质量的均质细长的平面二杆空间机器人柔性操作臂用D-Holzer法简化后的系统描述。
screen.width-400)this.style.width=screen.width-400;">
图2简化后的二柔性杆机器人操作臂系统


把该柔性臂看作是具有两个关节、二个弹性域和二个站点的集中参数系统。关节1和关节2的转动惯量分别为Ia1和Ia2,转角分别为θ1、θ2。站点1和站点2的质量、惯性张量分别为m1、m2和Iz1、Iz2,相应的变形和扭转角分别用u1、α1和u2、α2来表示。弹性域1和弹性域2的长度分别为l10、l2,其弹性变形的刚度系数分别为E1I1和E2I2。站点1和关节2之间的距离用l11表示。系统做小变形假设。
2.1坐标变换关系
弹性域k(k=1,2)与站点k的关系描述见图3所示。
从关节1到基坐标的坐标变换关系为:

screen.width-400)this.style.width=screen.width-400;">(1)


screen.width-400)this.style.width=screen.width-400;">
图3第k个弹性域的坐标系统描述


从站点1到关节1的坐标变换为
弹性域1没有变形的情况下Σ′1→Σ1

screen.width-400)this.style.width=screen.width-400;">(2)

弹性域1有变形的情况下Σ″1→Σ1′→Σ1

screen.width-400)this.style.width=screen.width-400;">(3)

关节2到站点1的坐标变换为

screen.width-400)this.style.width=screen.width-400;">(4)

站点2到关节2的坐标变换为

弹性域2没有变形的情况下Σ2′→Σ2

screen.width-400)this.style.width=screen.width-400;">(5)

弹性域2有变形的情况下Σ2″→Σ2′→Σ2

screen.width-400)this.style.width=screen.width-400;">(6)

所以,站点1到基坐标的坐标变换为

screen.width-400)this.style.width=screen.width-400;">(7)

站点2到基坐标的坐标变换为


(8)

式中γ=θ1+α1+θ2
Q1=l10cos θ1-u1sin(θ1+α1)+l11cos β+l2cos γ
Q2=l10sin θ1+u1cos(θ1+α1)+l11sin β+l2sin γ
2.2动力学模型的建立
站点1的位置矢量

screen.width-400)this.style.width=screen.width-400;">(9)

站点2的位置矢量

screen.width-400)this.style.width=screen.width-400;">(10)

其速度分别为

screen.width-400)this.style.width=screen.width-400;">(11)

screen.width-400)this.style.width=screen.width-400;">(12)

所以,系统的动能为

screen.width-400)this.style.width=screen.width-400;">(13)

系统的势能为

screen.width-400)this.style.width=screen.width-400;">(14)

虚功为

screen.width-400)this.style.width=screen.width-400;">(15)

耗散能为

screen.width-400)this.style.width=screen.width-400;">(16)

式中δ>0——小的阻尼系数


以上各式(13)~(16)代入Lagrange第二方程,经过复杂的推导和整理得到系统的动力学方程为

screen.width-400)this.style.width=screen.width-400;">(17)

式中m6×6——正定、对称、时变的质量矩阵
ψ6×1——包含哥氏力、离心力和弹性力等的变量耦合矩阵
F6×1——外加力矩列矩
p={θ,α,u}——系统的广义坐标
动力学方程式(17)中m及ψ中的元素的具体表达式参见文献[5]。

3动力学仿真

柔性臂的非线性动力学模型式(17)进一步可以写成

screen.width-400)this.style.width=screen.width-400;">(18)

令screen.width-400)this.style.width=screen.width-400;">,则

screen.width-400)this.style.width=screen.width-400;">(19)

对图2所示的一平面两柔性杆空间机器人操作臂进行动力学仿真。已知柔性臂系统的臂杆长度分别为l1=l2=2.0 m,l10=1.9 m,l11=0.1 m,集中质量分别为m1=2.0 kg,m2=200.0 kg,臂杆的弯曲刚度均为EI1=EI2=EI=200.0 N*m2,关节的转动惯量分别为Ia1=1.0 kg*m2,Ia2=0.5 kg*m2,站点1、站点2绕各自坐标系中心的转动惯量分别为Iz1=0.02 kg*m2,Iz2=0.05 kg*m2,弹性阻尼系数δ=0.005。在给出两个关节的驱动力矩分别为M1=0.6 N*m(0≤t≤2 s)

screen.width-400)this.style.width=screen.width-400;">

的情况下,在SGI工作站上,用积分一步的变步长四阶Runge-Kutta法计算所得到的各个臂杆末端的柔性变形及末端运动的响应分别见图4~图6。

screen.width-400)this.style.width=screen.width-400;">

图4柔性杆1的末端变形


以上针对大质量负载下的空间机器人柔性臂进行了动力学数值仿真的研究,得到了大负载情况下柔性臂的运动情况,柔性臂的运动的仿真结果精确可靠,算法的实时性好。





screen.width-400)this.style.width=screen.width-400;">screen.width-400)this.style.width=screen.width-400;">

图5柔性杆2的末端变形图6柔性臂末端运动轨迹




4结论

从以往柔性臂建模方法的研究,可以发现,假定模态法是分布参数系统的建模方法,对密度、质量、弹性等分布比较均匀的系统的建模非常有效,但其边界条件的处理较为复杂。而有限元素法和Holzer法对密度、质量和弹性等不均匀的集中参数系统建模非常方便有效,而且有限元素法对边界条件处理简单。另外,有限元素法与Holzer法比较,其建模过程十分有利于计算机来完成,所给出的模型信息,便于对柔性臂进行计算机图形动态仿真。但假定模态法和有限元素法对于复杂的多自由度柔性臂系统,不仅建模有困难,而且,得到以模型为基础的控制规则也不是现实的事情。而Holzer法对典型的集中参数系统的建模比有限元法更为简单方便,但也存在着模化误差较大、处理方法不够完善的问题。
经过改进以后的D-Holzer法,不仅适合于密度、质量和弹性等不均匀的集中参数系统建模,而且,其对密度、质量、弹性等分布比较均匀的系统的建模也非常有效,并且使柔性臂建模更加准确、方便。

注释:国家航天863青年基金资助项目。


作者简介丁希仑,男,工学博士,1967年9月出生,北京航空航天大学机器人研究所副教授。主要研究方向:机器人柔性臂动力学与控制、复杂动力学系统的模糊与智能控制。

作者单位:北京航空航天大学机器人研究所北京100083

参考文献

1Cetinkunt S, Ittoop B.Computer automated symbolic modeling of dynamics of robotic manipulators with flexible links. IEEE Transactions on Robotics and Automation, 1992,8(1)∶94~105
2Konno A, Uchiyama M. Modeling of a flexible man- ipulator dynamics based on the Holzer's method. J.of Japan Robot Institute, 1994,12(7)∶1021~1028
3Meirovitch L, Stemple T.Hybrid equations of motion for flexible multibody systems using quasi coordinates. J.of Guidance, Control, and Dynamics, 1995,18(4)∶678~688
4Yoshikama T, Hosoda K.Modeling of flexible manipu-lators using virtual rigid links and passive joints. The Internationa





顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
最新评论 查看所有评论
发表评论 查看所有评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 密码: 验证码:
赞助商位置
推荐内容
杂七杂八