好问题的「开放性」,首先表现在问题来源的「开放」。问题应具有一定的现实意义,与现实社会、生活实际有着直接关系,这种对社会、生活的「开放」,能够使学生体现出数学的价值和开展「问题解决」的意义。同时,问题的「开放性」,还包括问题具有多种不同的解法,或者多种可能的解答,打破「每一问题都有唯一的标准解答」和「问题中所给的信息都有用」的传统观念,这对于学生的思想解放和创新能力的发挥具有极为重要的意义。
三、 「问题解决」见解种种
从国际上看,对「问题解决」长期以来有着不同的理解,因而赋予「问题解决」以多种含义,总括起来有以下6种:
1、 把「问题解决」作为一种教学目的。
例如美国的贝格(Begle)教授认为:「教授数学的真正理由是因为数学有着广泛的应用,教授数学要有利于解决各种问题」,「学习怎样解决问题是学习数学的目的」。E.A.Silver教授也认为本世纪80年代以来,世界上几乎所有的国家都把提高学生的问题解决的能力作为数学教学的主要目的之一。当「问题解决」被认为是数学教学的一个目的时,它就独立于特殊的问题,独立于一般过程和方法以及数学的具体内容,此时,这种观点将影响到数学课程的设计和确定,并对课堂教学实践有重要的指导作用。
2、 把「问题解决」作为一个数学基本技能。
例如美国教育咨询委员会(NACOME)认为「问题解决」是一种数学基本技能,他们对如何定义和评价这项技能进行了许多探索和研究。当「问题解决」被视为一个基本技能时,它远非一个单一的技巧,而是若干个技巧的一个整体,需要人们从具体内容、问题的形式、构造数学模型、设计求解模列的方法等等综合考虑。
3、 把「问题解决」作为一种教学形式。
例如英国的柯可可劳夫特(Cockcroft)等人认为,应当在教学形式中增加讨论、研究问题解决和探索等形式,他还指出在英国,教师们还远远没有把「问题解决」的活动形式作为教学的类型。