麦卡锡是一个天赋很高的人,还在上初中时,他就弄了一份加州理工大学的课程目录,按目录自学了大学低年级的高等数学教材,做了教材上的所有练习题。这使他 1944年进入加州理工学院以后可以免修头两年的数学,并使他虽因战时环境(第二次世界大战当时正在进行之中,美国也在珍珠港事件后宣布参战)要在军队中充任一个小职员,占去了部分时间,仍得以·在1948年按时完成学业。然后到普林斯顿大学研究生院深造,于1951年取得数学博士学位。麦卡锡留校工作两年以后转至斯坦福大学,也只呆了两年就去达特茅斯学院任教(达特茅斯学院位于新罕布什尔州的汉诺威)。在那里,他发起了并成功举办了成为人工智能起点的有历史意义的“达特茅斯会议”。1958年麦卡锡到MIT任职,与明斯基(L.Minsky,1969年图灵奖获得者)一起组建了世界上第一个人工智能实验室,并第一个提出了将计算机的批处理方式改造成为能同时允许数十甚至上百用户使用的分时方式(6me-sharing)的建议,并推动MIT成立组织开展研究。其结果就是实现了世界上最早的分时系统——基于IBM 7094的CTSS和其后的MULTICS。麦卡锡虽因与主持该课题的负责人产生矛盾而于1962年离开MIT重返斯坦福,未能将此项目坚持到底,但学术界仍公认他是分时概念的创始人。麦卡锡到斯坦福后参加了一个基于DECPDP—1的分时系统的开发,并在那里组建了第二个人工智能实验室。
麦卡锡对人工智能的兴趣始于他当研究生的时候。1948年9月,他参加了一个“脑行为机制”的专题讨论会,会上,冯·诺伊曼发表了一篇关于自复制自动机的论文,提出了可以复制自身的机器的设想,这激起了麦卡锡的极大兴趣和好奇心,自此就开始尝试在计算机上模拟人的智能。1949年他向冯·诺伊曼谈了自己的想法,后者极表赞成和支持,鼓励他搞下去。在达特茅斯会议前后,麦卡锡的主要研究方向是计算机下棋。下棋程序的关键之一是如何减少计算机需要考虑的棋步。麦卡锡经过艰苦探索,终于发明了著名的α-β搜索法,使搜索能有效进行。在。-p搜索法中,麦卡锡将结点的产生与求评价函数值(或称返上值或倒推值)两者巧妙地结合起来,从而使某些子树结点根本不必产生与搜索(这谓之“修剪"--pruning或cutoff)。之所以称为。—p搜索法,是因为将处于取最大值级的结点的返上值或候选返上值PBV(Provisional Back-up Value)称为该结点的α值,而将处于取最小值级的结点的候选返上值或返上值称为该结点的p值。这样,在求得某结点的。值时,就可与其先辈结点的p值相比较,若。≥p,则可终止该结点以下的搜索,即从该结点处加以修剪,这叫p修剪;而在求得某结点的p值时,就可与其先辈结点的α值相比较,若p≤。,则可终止该结点以下的搜索,即从该结点处加以修剪,这叫。修剪。为了说明。-p修剪,我们举一个最简单的例子。设在取火柴棍的游戏中,A、B两人轮流从N根火柴中取1根或2根,不得多取,也不能不取。取走最后一根火柴者胜。用A(n)、B(n)表示轮到A或B时有n根火柴的状态,当n:5时轮到A取,则如下图所示,A有两种可能,一是取2根火柴进入B(3),另一是取1根火柴进入B(4)。显然,进入B(3)后,不管B取几根,A必胜,故A必走这一步,余下的分支不必再搜索了。。-p搜索法至今仍是解决人工智能问题中一种常用的高效方法。