你知道如何判定全等三角形吗?全等三角形有什么条件吗?
下面我们就来看看判定全等三角形的方法和步骤:
首先,让我们看看全等三角形的定义:
两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、翻折等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。简单的说就是,能够完全重合的两个三角形叫做全等三角形,“全等”用符号“≌”表示,读作“全等于”。而两个三角形全等的判定是几何证明的有力工具。
当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
由此,可以得出:全等三角形的对应边相等,对应角相等。
三角形全等的判定公理及推论:
1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。
2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。
3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。
由3可推到
4、有两角及一角的对边对应相等的两个三角形全等(AAS或“角角边”)
5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”)
所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。
注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。
A是英文角的缩写,S是英文边的缩写。
全等三角形的性质:
1、全等三角形的对应角相等、对应边相等。
2、线段垂直平分线上的点到线段两端点的距离相等。
3、角平分线上的点到角两边的距离相等。
全等三角形的运用
1、性质中三角形全等是条件,结论是对应角、对应边相等。 而全等的判定却刚好相反。
2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。
在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。
3、当图中出现两个以上等边三角形时,应首先考虑用SAS找全等三角形。
=========================================
集中优势兵力,各个歼灭。